If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+460x-24000=0
a = 1; b = 460; c = -24000;
Δ = b2-4ac
Δ = 4602-4·1·(-24000)
Δ = 307600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{307600}=\sqrt{400*769}=\sqrt{400}*\sqrt{769}=20\sqrt{769}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(460)-20\sqrt{769}}{2*1}=\frac{-460-20\sqrt{769}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(460)+20\sqrt{769}}{2*1}=\frac{-460+20\sqrt{769}}{2} $
| 12c/3+5*6c=0 | | n^2*2=27 | | 5x^2+66x+168=0 | | 2f^2+9f+7=0 | | x-9.9=6.4 | | x+(x+20)=3×(x-8) | | x+(x+20)=3*(x-8) | | 0.5(3-2x)=0.33(3-x) | | -32x^2-288x+1152=0 | | x+(x+20)=3x(x-8) | | 2x+20=-x | | -32*x^2-288*x+900=0 | | 1/x(50)=25x | | 5x+0.08=3x | | 10x+80=120 | | 8+x2=6 | | 4y(y-7)(y+5)=0 | | .6*x=40 | | a/6+8=5 | | r+2.1=4/7 | | r+2/1=4/7 | | x+(x/2)-7=17 | | 4(6x+1)=52 | | 3(-10+2x)=18 | | 4x+10=1/5x+88/5 | | 4-6x+3-32=0 | | 7x*1.5=-6x-3.7 | | 7(6+6x)=-462 | | 2(-1-6x)=-74 | | x−34=514−x+57. | | 2x^2+7x+12=-20 | | 4x−3=6x−7 |